login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255453
A255452(2^n-1).
1
1, 5, 21, 77, 277, 1005, 3669, 13421, 49109, 179693, 657493, 2405741, 8802517, 32208109, 117848405, 431203437, 1577759189, 5772968941, 21123103317, 77288739693, 282796954325, 1034744746733, 3786096966485, 13853204169325, 50688418034645, 185467253023213, 678618573585493, 2483043021926765
OFFSET
0,2
LINKS
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796, 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249, 2015.
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
FORMULA
G.f.: (1-x+2*x^2-4*x^3)/((1-x)*(1-5*x+6*x^2-4*x^3)).
CROSSREFS
Cf. A255452.
Sequence in context: A126645 A026329 A014533 * A134770 A272787 A084780
KEYWORD
nonn
AUTHOR
STATUS
approved