login
A084779
a(n) = sum of absolute-valued coefficients of (1+2*x-4*x^2)^n.
8
1, 7, 41, 207, 1313, 7807, 42593, 232463, 1290433, 7604415, 42034721, 236031231, 1363681121, 7457831007, 39670144513, 231087069823, 1291433872385, 7373001299199, 41437235793921, 229538650588863, 1268719471103233
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..2*n} abs(f(n, k)), where f(n, k) = (n!/(2*n-k)!)*i*(k-n)*2^k*5^(n/2)*LegendreP(n, n-k, 1/sqrt(5)). - G. C. Greubel, Jun 04 2023
MATHEMATICA
T[n_, k_]:=T[n, k]=SeriesCoefficient[Series[(1+2*x-4*x^2)^n, {x, 0, 2n}], k];
a[n_]:= a[n]= Sum[Abs[T[n, k]], {k, 0, 2n}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jun 04 2023 *)
PROG
(PARI) for(n=0, 40, S=sum(k=0, 2*n, abs(polcoeff((1+2*x-4*x^2)^n, k, x))); print1(S", "))
(Magma)
m:=40;
R<x>:=PowerSeriesRing(Integers(), 2*(m+2));
f:= func< n, k | Coefficient(R!( (1+2*x-4*x^2)^n ), k) >;
[(&+[ Abs(f(n, k)): k in [0..2*n]]): n in [0..m]]; // G. C. Greubel, Jun 04 2023
(SageMath)
def f(n, k):
P.<x> = PowerSeriesRing(QQ)
return P( (1+2*x-4*x^2)^n ).list()[k]
def a(n): return sum( abs(f(n, k)) for k in range(2*n+1) )
[a(n) for n in range(41)] # G. C. Greubel, Jun 04 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 14 2003
STATUS
approved