login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084182
a(n) = 3^n + (-1)^n - [1/(n+1)], where [] represents the floor function.
3
1, 2, 10, 26, 82, 242, 730, 2186, 6562, 19682, 59050, 177146, 531442, 1594322, 4782970, 14348906, 43046722, 129140162, 387420490, 1162261466, 3486784402, 10460353202, 31381059610, 94143178826, 282429536482, 847288609442, 2541865828330, 7625597484986
OFFSET
0,2
COMMENTS
Binomial transform of A084181.
From Peter Bala, Dec 26 2012: (Start)
Let F(x) = product {n >= 0} (1 - x^(3*n+1))/(1 - x^(3*n+2)). This sequence is the simple continued fraction expansion of the real number F(-1/3) = 1.47627 73316 74531 44215 ... = 1 + 1/(2 + 1/(10 + 1/(26 + 1/(82 + ...)))). See A111317.
(End)
FORMULA
a(n) = 3^n + (-1)^n - 0^n.
G.f.: (1+3*x^2)/((1+x)*(1-3*x)).
E.g.f.: exp(3*x)-exp(0)+exp(-x).
a(n) = 2 * A046717(n) for n >= 1.
MATHEMATICA
LinearRecurrence[{2, 3}, {1, 2, 10}, 30] (* Harvey P. Dale, Apr 27 2016 *)
CROSSREFS
Except for leading term, same as A102345.
Sequence in context: A183331 A324914 A025589 * A321240 A322201 A099583
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 19 2003
STATUS
approved