OFFSET
0,4
COMMENTS
In general, a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1)*u^(n-k-1)*(v/u)^(k-1) has g.f. x^2/((1-v*x^2)(1-u*x-v*x^2)) and satisfies the recurrence a(n) = u*a(n-1) + 2v*a(n-2) - u*v*a(n-3) - v^2*a(n-4).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,6,-6,-9).
FORMULA
G.f.: x^2/((1-3*x^2)*(1-2*x-3*x^2)).
a(n) = 2*a(n-1) + 6*a(n-2) - 6*a(n-3) - 9*a(n-4).
a(0)=0, a(1)=0; a(2)=1; a(n) = 2*a(n-1) + 3*a(n-2) if n is odd; a(n) = 2*a(n-1) + 3*a(n-2) + 3^m (m=1,2,3...) if n is even. - Vincenzo Librandi, Jun 26 2010
From G. C. Greubel, Jul 22 2022: (Start)
a(n) = (1/8)*(3^n - (-1)^n - 2*(1-(-1)^n)*3^((n-1)/2) ).
E.g.f.: (1/12)*(3*exp(x)*sinh(2*x) - 2*sqrt(3)*sinh(sqrt(3)*x)). (End)
MATHEMATICA
LinearRecurrence[{2, 6, -6, -9}, {0, 0, 1, 2}, 40] (* G. C. Greubel, Jul 22 2022 *)
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(n-k, k-1)*2^(n-k-1)*(3/2)^(k-1)); \\ Michel Marcus, Jan 20 2018
(Magma) I:=[0, 0, 1, 2]; [n le 4 select I[n] else 2*Self(n-1) +6*Self(n-2) -6*Self(n-3) -9*Self(n-4): n in [1..41]]; // G. C. Greubel, Jul 22 2022
(SageMath) [(1/8)*(3^n -(-1)^n -2*(1-(-1)^n)*3^((n-1)/2)) for n in (0..40)] # G. C. Greubel, Jul 22 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 23 2004
STATUS
approved