login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099583
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1)*2^(n-k-1)*(3/2)^(k-1).
1
0, 0, 1, 2, 10, 26, 91, 260, 820, 2420, 7381, 22022, 66430, 198926, 597871, 1792520, 5380840, 16139240, 48427561, 145272842, 435848050, 1307514626, 3922632451, 11767808780, 35303692060, 105910810460, 317733228541, 953198888462
OFFSET
0,4
COMMENTS
In general, a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1)*u^(n-k-1)*(v/u)^(k-1) has g.f. x^2/((1-v*x^2)(1-u*x-v*x^2)) and satisfies the recurrence a(n) = u*a(n-1) + 2v*a(n-2) - u*v*a(n-3) - v^2*a(n-4).
FORMULA
G.f.: x^2/((1-3*x^2)*(1-2*x-3*x^2)).
a(n) = 2*a(n-1) + 6*a(n-2) - 6*a(n-3) - 9*a(n-4).
a(n) = A002452(n/2) if n even; a(n) = 2*A006100((n+1)/2) if n odd. - R. J. Mathar, Jun 06 2010
a(0)=0, a(1)=0; a(2)=1; a(n) = 2*a(n-1) + 3*a(n-2) if n is odd; a(n) = 2*a(n-1) + 3*a(n-2) + 3^m (m=1,2,3...) if n is even. - Vincenzo Librandi, Jun 26 2010
From G. C. Greubel, Jul 22 2022: (Start)
a(n) = (1/8)*(3^n - (-1)^n - 2*(1-(-1)^n)*3^((n-1)/2) ).
E.g.f.: (1/12)*(3*exp(x)*sinh(2*x) - 2*sqrt(3)*sinh(sqrt(3)*x)). (End)
MATHEMATICA
LinearRecurrence[{2, 6, -6, -9}, {0, 0, 1, 2}, 40] (* G. C. Greubel, Jul 22 2022 *)
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(n-k, k-1)*2^(n-k-1)*(3/2)^(k-1)); \\ Michel Marcus, Jan 20 2018
(Magma) I:=[0, 0, 1, 2]; [n le 4 select I[n] else 2*Self(n-1) +6*Self(n-2) -6*Self(n-3) -9*Self(n-4): n in [1..41]]; // G. C. Greubel, Jul 22 2022
(SageMath) [(1/8)*(3^n -(-1)^n -2*(1-(-1)^n)*3^((n-1)/2)) for n in (0..40)] # G. C. Greubel, Jul 22 2022
CROSSREFS
Sequence in context: A084182 A321240 A322201 * A328743 A133479 A196324
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 23 2004
STATUS
approved