|
|
A099580
|
|
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1) * 4^(k-1).
|
|
2
|
|
|
0, 0, 1, 1, 9, 13, 65, 117, 441, 909, 2929, 6565, 19305, 45565, 126881, 309141, 833049, 2069613, 5467345, 13745797, 35877321, 90860509, 235418369, 598860405, 1544728185, 3940169805, 10135859761, 25896538981, 66507086889, 170093242813
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
In general a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1) * r^(k-1) has g.f. x^2/((1-r*x^2)*(1-x-r*x^2)) and satisfies the recurrence a(n) = a(n-1) + 2*r*a(n-2) - r*a(n-3) - r^2*a(n-4).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x^2/((1-4*x^2) * (1-x-4*x^2)).
a(n) = a(n-1) + 8*a(n-2) - 4*a(n-3) - 16*a(n-4).
a(n) = (4*(2/i)^(n-1)*ChebyshevU(n-1, i/4) - 2^n*(1-(-1)^n))/4.
E.g.f.: ( 4*exp(x/2)*sinh(sqrt(17)*x/2) - sqrt(17)*sinh(2*x) )/(2*sqrt(17)). (End)
|
|
MATHEMATICA
|
LinearRecurrence[{1, 8, -4, -16}, {0, 0, 1, 1}, 51] (* G. C. Greubel, Jul 24 2022 *)
|
|
PROG
|
(Magma) [n le 4 select Floor((n-1)/2) else Self(n-1) +8*Self(n-2) -4*Self(n-3) -16*Self(n-4): n in [1..41]]; // G. C. Greubel, Jul 24 2022
(SageMath)
@CachedFunction
if (n<4): return (n//2)
else: return a(n-1) +8*a(n-2) -4*a(n-3) -16*a(n-4)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|