login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3^n + (-1)^n - [1/(n+1)], where [] represents the floor function.
3

%I #19 Dec 19 2023 18:15:41

%S 1,2,10,26,82,242,730,2186,6562,19682,59050,177146,531442,1594322,

%T 4782970,14348906,43046722,129140162,387420490,1162261466,3486784402,

%U 10460353202,31381059610,94143178826,282429536482,847288609442,2541865828330,7625597484986

%N a(n) = 3^n + (-1)^n - [1/(n+1)], where [] represents the floor function.

%C Binomial transform of A084181.

%C From _Peter Bala_, Dec 26 2012: (Start)

%C Let F(x) = product {n >= 0} (1 - x^(3*n+1))/(1 - x^(3*n+2)). This sequence is the simple continued fraction expansion of the real number F(-1/3) = 1.47627 73316 74531 44215 ... = 1 + 1/(2 + 1/(10 + 1/(26 + 1/(82 + ...)))). See A111317.

%C (End)

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,3).

%F a(n) = 3^n + (-1)^n - 0^n.

%F G.f.: (1+3*x^2)/((1+x)*(1-3*x)).

%F E.g.f.: exp(3*x)-exp(0)+exp(-x).

%F a(n) = 2 * A046717(n) for n >= 1.

%t LinearRecurrence[{2,3},{1,2,10},30] (* _Harvey P. Dale_, Apr 27 2016 *)

%Y Except for leading term, same as A102345.

%Y Cf. A046717, A111317.

%K easy,nonn

%O 0,2

%A _Paul Barry_, May 19 2003