login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083942 Positions of breadth-first-wise encodings (A002542) of the complete binary trees (A084107) in A014486. 2
0, 1, 8, 625, 13402696, 19720133460129649, 126747521841153485025455279433135688, 15141471069096667541622192498608408980462133134430650704600552060872705905 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alexander Adamchuk, Nov 10 2007, Table of n, a(n) for n = 0..11

Eric Weisstein's World of Mathematics, Catalan Number.

FORMULA

a(n) = A057118(A084108(n)).

a(n) = A080300(A002542(n)) [provided that 2^((2^n)-1)*((2^((2^n)-1))-1) is indeed the formula for A002542].

Conjecture: a(n) = A014138(2^n-2) for n>0. - Alexander Adamchuk, Nov 10 2007

Conjecture: a(n) = Sum_{k=1..2^n-1} A000108(k). - Alexander Adamchuk, Nov 10 2007

Let h(n) = -((C(2*n,n)*hypergeom([1,1/2+n],[2+n],4))/(1+n)+I*sqrt(3)/2+1/2). Assuming Adamchuk's conjecture a(n) = h(2^n) and A014138(n) = h(n+1). - Peter Luschny, Mar 09 2015

CROSSREFS

Cf. A014138 (partial sums of Catalan numbers), A000108 (Catalan Numbers).

Sequence in context: A337842 A266317 A080320 * A274588 A027877 A129927

Adjacent sequences:  A083939 A083940 A083941 * A083943 A083944 A083945

KEYWORD

nonn

AUTHOR

Antti Karttunen, May 13 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 16:48 EDT 2022. Contains 354110 sequences. (Running on oeis4.)