login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083944
A generalized Jacobsthal sequence.
3
0, 1, -2, -3, -10, -19, -42, -83, -170, -339, -682, -1363, -2730, -5459, -10922, -21843, -43690, -87379, -174762, -349523, -699050, -1398099, -2796202, -5592403, -11184810, -22369619, -44739242, -89478483, -178956970, -357913939, -715827882, -1431655763
OFFSET
0,3
FORMULA
G.f.: x*(1-4*x)/((1+x)*(1-x)*(1-2*x)).
E.g.f.: (9*exp(x) - 4*exp(2*x) - 5*exp(-x))/6.
a(n) = (9 - 2^(n+2) - 5*(-1)^n)/6.
a(n) = a(n-1) + 2*a(n-2) - 3 with n > 1, a(0)=0, a(1)=1.
a(2*n) = -A000975(2*n); a(2*n+1) = 2 - A000975(2*n+1).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), with a(0)=0, a(1)=1, a(2)=-2. - Harvey P. Dale, Jun 08 2014
MATHEMATICA
CoefficientList[Series[x (1-4x)/((1+x)(1-x)(1-2x)), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 04 2012 *)
LinearRecurrence[{2, 1, -2}, {0, 1, -2}, 40] (* Harvey P. Dale, Jun 08 2014 *)
PROG
(Magma) [3/2-2^(n+1)/3-5*(-1)^n/6: n in [0..40]]; // Vincenzo Librandi, Apr 04 2012
(PARI) x='x+O('x^50); concat([0], Vec(x*(1-4*x)/((1+x)*(1-x)*(1-2*x)))) \\ G. C. Greubel, Oct 10 2017
CROSSREFS
Cf. A083943.
Sequence in context: A275020 A122822 A295951 * A306106 A165550 A328780
KEYWORD
sign,easy
AUTHOR
Paul Barry, May 09 2003
STATUS
approved