Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 08 2022 08:45:10
%S 0,1,-2,-3,-10,-19,-42,-83,-170,-339,-682,-1363,-2730,-5459,-10922,
%T -21843,-43690,-87379,-174762,-349523,-699050,-1398099,-2796202,
%U -5592403,-11184810,-22369619,-44739242,-89478483,-178956970,-357913939,-715827882,-1431655763
%N A generalized Jacobsthal sequence.
%H Vincenzo Librandi, <a href="/A083944/b083944.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-2).
%F G.f.: x*(1-4*x)/((1+x)*(1-x)*(1-2*x)).
%F E.g.f.: (9*exp(x) - 4*exp(2*x) - 5*exp(-x))/6.
%F a(n) = (9 - 2^(n+2) - 5*(-1)^n)/6.
%F a(n) = a(n-1) + 2*a(n-2) - 3 with n > 1, a(0)=0, a(1)=1.
%F a(2*n) = -A000975(2*n); a(2*n+1) = 2 - A000975(2*n+1).
%F a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), with a(0)=0, a(1)=1, a(2)=-2. - _Harvey P. Dale_, Jun 08 2014
%t CoefficientList[Series[x (1-4x)/((1+x)(1-x)(1-2x)),{x,0,40}],x] (* _Vincenzo Librandi_, Apr 04 2012 *)
%t LinearRecurrence[{2,1,-2},{0,1,-2},40] (* _Harvey P. Dale_, Jun 08 2014 *)
%o (Magma) [3/2-2^(n+1)/3-5*(-1)^n/6: n in [0..40]]; // _Vincenzo Librandi_, Apr 04 2012
%o (PARI) x='x+O('x^50); concat([0], Vec(x*(1-4*x)/((1+x)*(1-x)*(1-2*x)))) \\ _G. C. Greubel_, Oct 10 2017
%Y Cf. A083943.
%K sign,easy
%O 0,3
%A _Paul Barry_, May 09 2003