login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122822
The (1,4) entry in the matrix M^n, where M is the 4 X 4 matrix [[0,-1,1,0],[0,0,-1,1],[1,1,1,0],[0,1,1,1]].
1
0, 0, -1, 0, 0, -1, 1, 2, 3, 10, 19, 35, 71, 131, 240, 446, 810, 1467, 2660, 4792, 8621, 15501, 27814, 49873, 89384, 160079, 286589, 512943, 917813, 1641978, 2937132, 5253248, 9395035, 16801268, 30044388, 53724067, 96064297, 171769178, 307129259, 549150614, 981877515, 1755576755, 3138916347
OFFSET
0,8
FORMULA
a(n) = 2*a(n-1) + a(n-3) - 3*a(n-4) for n>=4; a(0)=0, a(1)=-1, a(2)=0, a(3)=0.
G.f.: -x^2*(1 - 2*x) / (1 - 2*x - x^3 + 3*x^4). - Colin Barker, Mar 03 2017
MAPLE
a[0]:=0: a[1]:=0: a[2]:=-1: a[3]:=0: for n from 4 to 42 do a[n]:=2*a[n-1]+a[n-3]-3*a[n-4] od: seq(a[n], n=0..42);
MATHEMATICA
M = {{0, -1, 1, 0}, {0, 0, -1, 1}, {1, 1, 1, 0}, {0, 1, 1, 1}}; v[1] = {0, 0, 0, 1}; v[n_] := v[n] = M.v[n - 1]; a1 = Table[v[n][[1]], {n, 1, 50}]
PROG
(PARI) concat(vector(2), Vec(-x^2*(1 - 2*x) / (1 - 2*x - x^3 + 3*x^4) + O(x^50))) \\ Colin Barker, Mar 03 2017
CROSSREFS
Sequence in context: A329850 A175569 A275020 * A295951 A083944 A306106
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Oct 26 2006
STATUS
approved