login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The (1,4) entry in the matrix M^n, where M is the 4 X 4 matrix [[0,-1,1,0],[0,0,-1,1],[1,1,1,0],[0,1,1,1]].
1

%I #12 Mar 03 2017 08:31:33

%S 0,0,-1,0,0,-1,1,2,3,10,19,35,71,131,240,446,810,1467,2660,4792,8621,

%T 15501,27814,49873,89384,160079,286589,512943,917813,1641978,2937132,

%U 5253248,9395035,16801268,30044388,53724067,96064297,171769178,307129259,549150614,981877515,1755576755,3138916347

%N The (1,4) entry in the matrix M^n, where M is the 4 X 4 matrix [[0,-1,1,0],[0,0,-1,1],[1,1,1,0],[0,1,1,1]].

%H Colin Barker, <a href="/A122822/b122822.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,1,-3).

%F a(n) = 2*a(n-1) + a(n-3) - 3*a(n-4) for n>=4; a(0)=0, a(1)=-1, a(2)=0, a(3)=0.

%F G.f.: -x^2*(1 - 2*x) / (1 - 2*x - x^3 + 3*x^4). - _Colin Barker_, Mar 03 2017

%p a[0]:=0: a[1]:=0: a[2]:=-1: a[3]:=0: for n from 4 to 42 do a[n]:=2*a[n-1]+a[n-3]-3*a[n-4] od: seq(a[n],n=0..42);

%t M = {{0, -1, 1, 0}, {0, 0, -1, 1}, {1, 1, 1, 0}, {0, 1, 1, 1}}; v[1] = {0, 0, 0, 1}; v[n_] := v[n] = M.v[n - 1]; a1 = Table[v[n][[1]], {n, 1, 50}]

%o (PARI) concat(vector(2), Vec(-x^2*(1 - 2*x) / (1 - 2*x - x^3 + 3*x^4) + O(x^50))) \\ _Colin Barker_, Mar 03 2017

%K sign,easy

%O 0,8

%A _Gary W. Adamson_ and _Roger L. Bagula_, Oct 20 2006

%E Edited by _N. J. A. Sloane_, Oct 26 2006