login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274588
Values of n such that 2*n-1 and 7*n-1 are both triangular numbers.
2
1, 8, 638, 6931, 572671, 6223778, 514257668, 5588945461, 461802812941, 5018866799948, 414698411763098, 4506936797407591, 372398711960448811, 4047224225205216518, 334413628642071268928, 3634402847297487025321, 300303066121868039048281
OFFSET
1,2
FORMULA
Intersection of A069099 and A174114.
G.f.: (1+7*x-268*x^2+7*x^3+x^4) / ((1-x)*(1-30*x+x^2)*(1+30*x+x^2)).
EXAMPLE
8 is in the sequence because 2*8-1 = 15, 7*8-1 = 55, and 15 and 55 are both triangular numbers.
MATHEMATICA
CoefficientList[Series[(1 + 7 x - 268 x^2 + 7 x^3 + x^4)/((1 - x) (1 - 30 x + x^2) (1 + 30 x + x^2)), {x, 0, 16}], x] (* Michael De Vlieger, Jun 30 2016 *)
LinearRecurrence[{1, 898, -898, -1, 1}, {1, 8, 638, 6931, 572671}, 20] (* Harvey P. Dale, Apr 10 2023 *)
PROG
(PARI) isok(n) = ispolygonal(2*n-1, 3) && ispolygonal(7*n-1, 3)
(PARI) Vec((1+7*x-268*x^2+7*x^3+x^4)/((1-x)*(1-30*x+x^2)*(1+30*x+x^2)) + O(x^20))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jun 29 2016
STATUS
approved