login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positions of breadth-first-wise encodings (A002542) of the complete binary trees (A084107) in A014486.
2

%I #28 Apr 21 2021 04:34:26

%S 0,1,8,625,13402696,19720133460129649,

%T 126747521841153485025455279433135688,

%U 15141471069096667541622192498608408980462133134430650704600552060872705905

%N Positions of breadth-first-wise encodings (A002542) of the complete binary trees (A084107) in A014486.

%H Alexander Adamchuk, Nov 10 2007, <a href="/A083942/b083942.txt">Table of n, a(n) for n = 0..11</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CatalanNumber.html">Catalan Number</a>.

%F a(n) = A057118(A084108(n)).

%F a(n) = A080300(A002542(n)) [provided that 2^((2^n)-1)*((2^((2^n)-1))-1) is indeed the formula for A002542].

%F Conjecture: a(n) = A014138(2^n-2) for n>0. - _Alexander Adamchuk_, Nov 10 2007

%F Conjecture: a(n) = Sum_{k=1..2^n-1} A000108(k). - _Alexander Adamchuk_, Nov 10 2007

%F Let h(n) = -((C(2*n,n)*hypergeom([1,1/2+n],[2+n],4))/(1+n)+I*sqrt(3)/2+1/2). Assuming Adamchuk's conjecture a(n) = h(2^n) and A014138(n) = h(n+1). - _Peter Luschny_, Mar 09 2015

%Y Cf. A014138 (partial sums of Catalan numbers), A000108 (Catalan Numbers).

%K nonn

%O 0,3

%A _Antti Karttunen_, May 13 2003