login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083058
Number of eigenvalues equal to 1 of n X n matrix A(i,j)=1 if j=1 or i divides j.
8
1, 0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66
OFFSET
1,5
COMMENTS
All numbers occur at least once, but terms > 1 of A000295 appear twice. - Robert G. Wilson v, Apr 19 2006
It appears that a(n) = Sum_{k=0..n-1} (1 + (-1)^A000108(k))/2 (n > 1). - Paul Barry, Mar 31 2008
Barry's observation above is true because A000108 obtains odd values only at points (2^j)-1 (A000225) and here the repeated values (A000295) occur precisely at positions given by A000225 and A000079. - Antti Karttunen, Aug 17 2013
a(n)+1 gives a lower bound for nonzero terms of A228086 and A228087. - Antti Karttunen, Aug 17 2013
LINKS
J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc., 50 (No. 3, March 2003), 341-353. See p. 347.
FORMULA
a(n) = n - A070939(n), n > 1.
a(1)=1, else a(n)=b(n) with b(0)=0, b(2n)=b(n)+n-1, b(2n+1)=b(n)+n. - Ralf Stephan, Oct 11 2003
Except for a(1), a(n) = n - 1 - floor(log(2,n)). - Robert G. Wilson v, Apr 19 2006
It seems that a(n) = A182220(n+1)-1 for all n > 1. - Antti Karttunen, Aug 17 2013
MAPLE
A083058 := proc(n)
if n = 1 then
1;
else
n-floor(log[2](n))-1 ;
end if;
end proc:
seq(A083058(n), n=1..40) ; # R. J. Mathar, Jul 23 2017
MATHEMATICA
a[1] = 1; a[n_] := n - Floor[Log[2, n]] - 1;
Array[a, 100] (* Jean-François Alcover, Feb 27 2019 *)
PROG
(PARI) a(n)=if(n<2, n>0, n-floor(log(n)/log(2))-1)
(PARI) a(n)= if(n<1, 0, valuation( subst( charpoly( matrix(n, n, i, j, (j==1) || (0==j%i))), x, x+1), x))
(Scheme) (define (A083058 n) (if (< n 2) n (- n (A070939 n)))) ;; Antti Karttunen, Aug 17 2013
(Python) def a(n): return n - n.bit_length() + (n == 1) # Matthew Andres Moreno, Jan 04 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Apr 18 2003
STATUS
approved