|
|
A082555
|
|
Primes whose base-3 representation does not contain a 0.
|
|
4
|
|
|
2, 5, 7, 13, 17, 23, 41, 43, 53, 67, 71, 79, 131, 149, 151, 157, 211, 229, 233, 239, 241, 367, 373, 401, 449, 457, 607, 617, 619, 643, 647, 691, 701, 719, 727, 1093, 1097, 1103, 1123, 1129, 1187, 1201, 1213, 1367, 1373, 1427, 1429, 1447, 1453, 1823, 1831, 1861
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Primes in A032924. - Robert Israel, Dec 28 2018
The analog "primes without digit 2 in ternary" is A077717. There is no prime > 2 not having the digit 1 in ternary, since then the number is divisible by 2. - M. F. Hasler, Feb 15 2023
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
41 = 1112_3, which contains no 0.
|
|
MAPLE
|
select(t -> isprime(t) and not(has(convert(t, base, 3), 0)), [2, seq(i, i=5..10000, 2)]); # Robert Israel, Dec 28 2018
|
|
PROG
|
(PARI) dec3(s)=while(s>0, if(s%3==0, return(0), s=floor(s/3))); return(1)
forprime(i=1, 20000, if(dec3(i)==1, print1(i, ", "), ))
(Python)
def is_A082555(n): return is_A032924(n) and A010051(n)
[p for p in range(1888) if is_A082555(n)] # M. F. Hasler, Feb 15 2023
|
|
CROSSREFS
|
Cf. A032924 (numbers without digit 0 in base 3), A073779, A077267.
Cf. A077717 (primes that are the sum of distinct powers of 3 <=> base-3 representation does not contain a digit 2).
Sequence in context: A107426 A222532 A144256 * A160794 A092059 A260388
Adjacent sequences: A082552 A082553 A082554 * A082556 A082557 A082558
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Randy L. Ekl, May 03 2003
|
|
STATUS
|
approved
|
|
|
|