OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..5000
Ralf Stephan, Some divide-and-conquer sequences ...
Ralf Stephan, Table of generating functions
FORMULA
a(0) = 1, a(2*n) = 2^n, a(2*n+1) = a(n).
a((2*n+1)*2^p-1) = 2^n, p >= 0 and n >= 0. - Johannes W. Meijer, Feb 11 2013
MAPLE
nmax := 48: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do a((2*n+1)*2^p-1) := 2^n od: od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Feb 11 2013
A082392 := proc(n)
2^A025480(n) ;
end proc:
seq(A082392(n), n=0..100) ; # R. J. Mathar, Jul 16 2020
MATHEMATICA
a[n_] := 2^(((n+1)/2^IntegerExponent[n+1, 2]+1)/2-1);
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 15 2023 *)
PROG
(PARI) for(n=0, 50, l=ceil(log(n+1)/log(2)); t=polcoeff(sum(k=0, l, (x^2^k)/(1-2*x^2^(k+1)))/x + O(x^(n+1)), n); print1(t", "); ) ;
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Jun 07 2003
STATUS
approved