login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082392
Expansion of (1/x) * Sum_{k>=0} x^2^k / (1 - 2*x^2^(k+1)).
5
1, 1, 2, 1, 4, 2, 8, 1, 16, 4, 32, 2, 64, 8, 128, 1, 256, 16, 512, 4, 1024, 32, 2048, 2, 4096, 64, 8192, 8, 16384, 128, 32768, 1, 65536, 256, 131072, 16, 262144, 512, 524288, 4, 1048576, 1024, 2097152, 32, 4194304, 2048, 8388608, 2, 16777216
OFFSET
0,3
FORMULA
a(0) = 1, a(2*n) = 2^n, a(2*n+1) = a(n).
a(n) = 2^A025480(n) = 2^(A003602(n)-1).
a((2*n+1)*2^p-1) = 2^n, p >= 0 and n >= 0. - Johannes W. Meijer, Feb 11 2013
MAPLE
nmax := 48: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do a((2*n+1)*2^p-1) := 2^n od: od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Feb 11 2013
A082392 := proc(n)
2^A025480(n) ;
end proc:
seq(A082392(n), n=0..100) ; # R. J. Mathar, Jul 16 2020
MATHEMATICA
a[n_] := 2^(((n+1)/2^IntegerExponent[n+1, 2]+1)/2-1);
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 15 2023 *)
PROG
(PARI) for(n=0, 50, l=ceil(log(n+1)/log(2)); t=polcoeff(sum(k=0, l, (x^2^k)/(1-2*x^2^(k+1)))/x + O(x^(n+1)), n); print1(t", "); ) ;
CROSSREFS
Sequence in context: A364952 A113418 A117000 * A377377 A233327 A307107
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Jun 07 2003
STATUS
approved