OFFSET
1,3
COMMENTS
Every practical number > 1 contains at least one primitive practical divisor because they are all even and 2 is primitive practical. Also 1 is primitive practical. If the largest primitive practical factor of the practical number A005153(n) is p then a(n)*p = A005153(n). Whenever a(n) = 1, A005153(n) is also primitive practical.
LINKS
Frank M Jackson, Table of n, a(n) for n = 1..10000
EXAMPLE
MATHEMATICA
lst1=Last/@ReadList["https://oeis.org/A267124/b267124.txt", {Number, Number}]; lst2=Last/@ReadList["https://oeis.org/A005153/b005153.txt", {Number, Number}]; getm[p_] := Module[{plst=Select[lst1, #<=p &], k, l, n=0}, l=Length@plst; If[Last@plst==p, Return[1]]; While[!IntegerQ[k=p/plst[[l-n]]], n++]; k]; Table[getm[lst2[[n]]], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Frank M Jackson, Oct 26 2024
STATUS
approved