login
A081408
a(n) = (n+1)*a(n-5), with a(0)=a(1)=a(2)=a(3)=a(4)=1.
1
1, 1, 1, 1, 1, 6, 7, 8, 9, 10, 66, 84, 104, 126, 150, 1056, 1428, 1872, 2394, 3000, 22176, 31416, 43056, 57456, 75000, 576576, 848232, 1205568, 1666224, 2250000, 17873856, 27143424, 39783744, 56651616, 78750000, 643458816, 1004306688, 1511782272
OFFSET
0,6
COMMENTS
Quintic factorial sequences are generated by single 5-order recursion and appear in unified form.
LINKS
EXAMPLE
A008548, A034323, A034300, A034301, A034325 sequences are combed together as A081408(5n+r) with r=0,1,2,3,4.
MATHEMATICA
a[0]=a[1]=a[2]=a[3]=a[4]=1; a[x_]:= (x+1)*a[x-5]; Table[a[n], {n, 40}]
PROG
(Haskell)
a081407 n = a081408_list !! n
a081407_list = 1 : 1 : 1 : 1 : zipWith (*) [5..] a081407_list
-- Reinhard Zumkeller, Jan 05 2012
(PARI) m=30; v=concat([1, 1, 1, 1, 1], vector(m-5)); for(n=6, m, v[n]=n*v[n-5] ); v \\ G. C. Greubel, Aug 15 2019
(Magma) [n le 5 select 1 else n*Self(n-5): n in [1..40]]; // G. C. Greubel, Aug 15 2019
(Sage) def a(n):
if (n<5): return 1
else: return (n+1)*a(n-5)
[a(n) for n in (0..40)] # G. C. Greubel, Aug 15 2019
(GAP) a:=[1, 1, 1, 1, 1];; for n in [6..40] do a[n]:=n*a[n-5]; od; a; # G. C. Greubel, Aug 15 2019
CROSSREFS
Cf. A001147, A002866, A034001, A007599, A034000, A007696, A000407, A034176, A034177, A008548, A034323, A034300, A034301, A034325 [double, triple, quartic, quintic, factorial subsequences], generated together in A081405-A081408.
Sequence in context: A058368 A321852 A108613 * A143616 A005050 A309265
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 01 2003
STATUS
approved