login
A081411
Partial product of prime gaps: a(n) = a(n-1)*(prime(n+1) - prime(n)).
4
1, 2, 4, 16, 32, 128, 256, 1024, 6144, 12288, 73728, 294912, 589824, 2359296, 14155776, 84934656, 169869312, 1019215872, 4076863488, 8153726976, 48922361856, 195689447424, 1174136684544, 9393093476352, 37572373905408, 75144747810816, 300578991243264, 601157982486528
OFFSET
1,2
COMMENTS
Original name was: Generated by recursion: a(n)=(Mod[Prime[n+1],Prime[n]]*n[n-1]; a[0]=1; Product of the first n consecutive prime-differences.
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = A099002. - Amiram Eldar, Nov 19 2020
MATHEMATICA
a[1] = 1; a[n_] := a[n] = a[n - 1] * (Prime[n + 1] - Prime[n]); Array[a, 30] (* Amiram Eldar, Nov 19 2020 *)
PROG
(PARI) diff(v)=vector(#v-1, i, v[i+1]-v[i])
pprod(v)=my(t=1); vector(#v, i, t*=v[i])
pprod(diff(primes(50))) \\ Charles R Greathouse IV, Mar 27 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 01 2003
EXTENSIONS
New name from Charles R Greathouse IV, Mar 27 2014
More terms from Amiram Eldar, Nov 19 2020
STATUS
approved