login
A080940
Smallest proper divisor of n which is a suffix of n in binary representation; a(n) = 0 if no such divisor exists.
10
0, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 4, 1, 2, 1, 0, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 0, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 0, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 1, 2, 1, 4, 1, 2, 1, 8
OFFSET
1,6
COMMENTS
By definition, identical to A006519 except that a(2^k) = 0 for all k.
a(3*2^k)=2^k and a(m)<2^k for m<3*2^k (see A007283).
LINKS
EXAMPLE
n=6='110', divisors<6: 1='1', 2='10' and 3='11', therefore a(6)=2='10';
n=7='111', divisors<7: 1='1', therefore a(7)=1;
n=8='1000', divisors<8: 1='1', 2='10' and 4='100', therefore a(8)=0.
PROG
(Haskell)
import Data.List (isPrefixOf); import Data.Function (on)
a080940 n = if null ds then 0 else head ds where
ds = filter ((flip isPrefixOf `on` a030308_row) n) $
a027751_row n
-- Reinhard Zumkeller, Mar 27 2014
(Python)
def A080940(n): return (m:=n&-n)*(m!=n) # Chai Wah Wu, Jun 20 2023
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Reinhard Zumkeller, Feb 25 2003
EXTENSIONS
Definition improved by Reinhard Zumkeller, Mar 27 2014
STATUS
approved