The OEIS is supported by the many generous donors to the OEIS Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080541 In binary representation: keep the first digit and left-rotate the others. 12
 1, 2, 3, 4, 6, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15, 16, 18, 20, 22, 24, 26, 28, 30, 17, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Permutation of natural numbers: let r(n,0)=n, r(n,k)=a(r(n,k-1)) for k>0, then r(n,floor(log_2(n))) = n and for n>1: r(n,floor(log_2(n))-1) = A080542(n). Discarding their most significant bit, binary representations of numbers present in each cycle of this permutation form a distinct equivalence class of binary necklaces, thus there are A000031(n) separate cycles in each range [2^n .. (2^(n+1))-1] (for n >= 0) of this permutation. A256999 gives the largest number present in n's cycle. - Antti Karttunen, May 16 2015 LINKS Antti Karttunen, Table of n, a(n) for n = 1..8192 Index entries for sequences related to necklaces Index entries for sequences that are permutations of the natural numbers FORMULA From Antti Karttunen, May 16 2015: (Start) a(1) = 1; for n > 1, a(n) = A053644(n) bitwise_OR (2*A053645(n) + second_most_significant_bit_of(n)). [Here bitwise_OR is a 2-argument function given by array A003986 and second_most_significant_bit_of gives the second most significant bit (0 or 1) of n larger than 1. See A079944.] Other identities. For all n >= 1: a(n) = A059893(A080542(A059893(n))). a(n) = A054429(a(A054429(n))). (End) A080542(a(n)) = a(A080542(n)) = n. [A080542 is the inverse permutation.] From Robert Israel, May 19 2015: (Start) Let d = floor(log(n)). If n >= 3*2^(d-1) then a(n) = 2*n + 1 - 2^(d+1), otherwise a(n) = 2*n - 2^d. G.f.: 2*x/(x-1)^2 + Sum_{n>=1} x^(2^n)+(2^n-1)*x^(3*2^(n-1)))/(x-1). (End) EXAMPLE a(20)=a('10100')='11000'=24; a(24)=a('11000')='10001'=17. MAPLE f:= proc(n) local d; d:= ilog2(n); if n >= 3/2*2^d then 2*n+1-2^(d+1) else 2*n - 2^d fi end proc: map(f, [\$1..100]); # Robert Israel, May 19 2015 PROG (Scheme) (define (A080541 n) (if (< n 2) n (A003986bi (A053644 n) (+ (* 2 (A053645 n)) (A079944off2 n))))) ;; A003986bi gives the bitwise OR of its two arguments. See A003986. ;; Where A079944off2 gives the second most significant bit of n. (Cf. A079944): (define (A079944off2 n) (A000035 (floor->exact (/ n (A072376 n))))) ;; Antti Karttunen, May 16 2015 (R) maxlevel <- 6 # by choice a <- 1:3 for(m in 1:maxlevel) for(k in 0:(2^(m-1)-1)){ a[2^(m+1) + 2*k ] = 2*a[2^m + k] a[2^(m+1) + 2*k + 1] = 2*a[2^m + 2^(m-1) + k] a[2^(m+1) + 2^m + 2*k ] = 2*a[2^m + k] + 1 a[2^(m+1) + 2^m + 2*k + 1] = 2*a[2^m + 2^(m-1) + k] + 1 } a # Yosu Yurramendi, Oct 12 2020 (Python) def A080541(n): return ((n&(m:=1< 1 else n # Chai Wah Wu, Jan 22 2023 CROSSREFS Inverse: A080542. Cf. A000031, A003986, A053644, A053645, A000523, A007088, A079944, A080413, A080543, A054429, A256999, A257250. The set of permutations {A059893, A080541, A080542} generates an infinite dihedral group. Sequence in context: A267106 A275119 A218252 * A330081 A072759 A361482 Adjacent sequences: A080538 A080539 A080540 * A080542 A080543 A080544 KEYWORD nonn,base AUTHOR Reinhard Zumkeller, Feb 20 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 16:37 EST 2023. Contains 367693 sequences. (Running on oeis4.)