login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080392
Numbers k such that A000984(k) mod k = 0 and A080383(k) != 7.
1
2, 420, 920, 1122, 1218, 1892, 1978, 2444, 2914, 3198, 3782, 4028, 4136, 4292, 4664, 4958, 4960, 5330, 5762, 5986, 6020, 6032, 6710, 6834, 6864, 6882, 6954, 6956, 6968, 7106, 7130, 7140, 7238, 7254, 7448, 7616, 8178, 8190, 8400, 8692, 9462, 9506, 10712, 11060, 11288
OFFSET
1,1
COMMENTS
Numbers arising in A067348 and not present in A080385.
Even numbers n such that n divides binomial(n, [n/2]) and A010551(n) does not divide j!*(n-j)! exactly 7 times for j = 0..n. - Peter Luschny, Aug 04 2017
LINKS
David A. Corneth, Table of n, a(n) for n = 1..274 (Terms <= 60000)
EXAMPLE
A080383(2) = 3;
A080383(420) = 11;
A080383(920) = 11;
A080383(1122) = 9;
A080383(1218) = 9.
MAPLE
isa := proc(n) local bn, bm;
if n mod 2 = 0 then bn := binomial(n, iquo(n, 2)):
if modp(bn, n) = 0 then
bm := (n, j) -> `if`(modp(bn, binomial(n, j)) = 0, 1, 0):
return 1 <> add(bm(n, j), j=2..iquo(n, 2)-1)
fi fi; false end:
select(isa, [$1..5000]); # Peter Luschny, Aug 04 2017
MATHEMATICA
Do[s=Count[Table[IntegerQ[Binomial[n, Floor[n/2]]/ Binomial[n, j]], {j, 0, n}], True]; s1=IntegerQ[Binomial[n, n/2]/n]; If[ !Equal[s, 7] && Equal[s1, True], Print[n]], {n, 1, 10000}]
(* Second program: *)
Select[Range@ 5000, Function[n, And[Divisible[Binomial[n, n/2], n], Count[Table[Divisible[Binomial[n, Floor[n/2]], Binomial[n, j]], {j, 0, n}], True] != 7]]] (* Michael De Vlieger, Jul 30 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 17 2003
EXTENSIONS
More terms from Michael De Vlieger, Jul 30 2017
STATUS
approved