|
|
A154541
|
|
Numbers k such that reverse(k) is the number of divisors of k.
|
|
0
|
|
|
1, 2, 420, 23000, 441000, 89000000, 2340000000, 8210000000, 6160000000000, 25410000000000, 27600000000000, 42600000000000, 2930000000000000, 8440000000000000, 445000000000000000, 65110000000000000000, 227000000000000000000, 250200000000000000000, 449100000000000000000, 4932000000000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The larger terms of the sequence are believed to end in zeros. It is assumed that the number of divisors of any number is usually significantly smaller than the number.
|
|
LINKS
|
Table of n, a(n) for n=1..20.
|
|
EXAMPLE
|
420 is a term because reverse(420) = 24 and 420 has 24 factors: 1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140, 210, 420.
|
|
MAPLE
|
with(numtheory): rev := proc (n) local nn: nn := convert(n, base, 10): add(nn[j]*10^(nops(nn)-j), j = 1 .. nops(nn)) end proc: a := proc (n) if rev(n) = tau(n) then n else end if end proc: seq(a(n), n = 1 .. 25000); # Emeric Deutsch, Jan 15 2009
|
|
PROG
|
(PARI) isok(k) = fromdigits(Vecrev(digits(k))) == numdiv(k); \\ Michel Marcus, Jan 06 2019
|
|
CROSSREFS
|
Cf. A000005 (number of divisors), A004086 (reverse).
Sequence in context: A259562 A177321 A080392 * A119120 A332142 A109931
Adjacent sequences: A154538 A154539 A154540 * A154542 A154543 A154544
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 11 2009
|
|
EXTENSIONS
|
a(5) from Emeric Deutsch, Jan 15 2009
a(6)-a(15) from Donovan Johnson, Jun 14 2009
Terms a(16) onward from Max Alekseyev, Feb 16 2011
Edited by Jon E. Schoenfield, Jan 06 2019
|
|
STATUS
|
approved
|
|
|
|