Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Aug 04 2017 14:33:18
%S 2,420,920,1122,1218,1892,1978,2444,2914,3198,3782,4028,4136,4292,
%T 4664,4958,4960,5330,5762,5986,6020,6032,6710,6834,6864,6882,6954,
%U 6956,6968,7106,7130,7140,7238,7254,7448,7616,8178,8190,8400,8692,9462,9506,10712,11060,11288
%N Numbers k such that A000984(k) mod k = 0 and A080383(k) != 7.
%C Numbers arising in A067348 and not present in A080385.
%C Even numbers n such that n divides binomial(n, [n/2]) and A010551(n) does not divide j!*(n-j)! exactly 7 times for j = 0..n. - _Peter Luschny_, Aug 04 2017
%H David A. Corneth, <a href="/A080392/b080392.txt">Table of n, a(n) for n = 1..274</a> (Terms <= 60000)
%e A080383(2) = 3;
%e A080383(420) = 11;
%e A080383(920) = 11;
%e A080383(1122) = 9;
%e A080383(1218) = 9.
%p isa := proc(n) local bn, bm;
%p if n mod 2 = 0 then bn := binomial(n, iquo(n,2)):
%p if modp(bn, n) = 0 then
%p bm := (n, j) -> `if`(modp(bn, binomial(n, j)) = 0, 1, 0):
%p return 1 <> add(bm(n, j), j=2..iquo(n,2)-1)
%p fi fi; false end:
%p select(isa, [$1..5000]); # _Peter Luschny_, Aug 04 2017
%t Do[s=Count[Table[IntegerQ[Binomial[n, Floor[n/2]]/ Binomial[n, j]], {j, 0, n}], True]; s1=IntegerQ[Binomial[n, n/2]/n]; If[ !Equal[s, 7] && Equal[s1, True], Print[n]], {n, 1, 10000}]
%t (* Second program: *)
%t Select[Range@ 5000, Function[n, And[Divisible[Binomial[n, n/2], n], Count[Table[Divisible[Binomial[n, Floor[n/2]], Binomial[n, j]], {j, 0, n}], True] != 7]]] (* _Michael De Vlieger_, Jul 30 2017 *)
%Y Cf. A000984, A001405, A067348, A080383, A080385.
%K nonn
%O 1,1
%A _Labos Elemer_, Mar 17 2003
%E More terms from _Michael De Vlieger_, Jul 30 2017