login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080383 Number of j (0 <= j <= n) such that the central binomial coefficient C(n,floor(n/2)) = A001405(n) is divisible by C(n,j). 10
1, 2, 3, 4, 3, 6, 3, 6, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 8, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 3, 8, 3, 6, 5, 10, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..100000 (first 1000 terms from Vincenzo Librandi, terms 1001..9999 from David A. Corneth)

EXAMPLE

For n <= 500 only a few values of a(n) arise: {1,2,3,4,5,6,7,8,10,11,14}.

From Jon E. Schoenfield, Sep 15 2019: (Start)

a(n)=1 occurs only at n=0.

a(n)=2 occurs only at n=1.

a(n)=3 occurs for all even n > 0 such that C(n,j) divides C(n,n/2) only at j = 0, n/2, and n. (This is the case for about 4/9 of the first 100000 terms, and there appear to be nearly as many terms for which a(n)=6.)

a(n)=4 occurs only at n=3.

For n <= 100000, the only values of a(n) that occur are 1..16, 18, 19, 22, 23, and 26.

   k | Indices n (up to 100000) at which a(n)=k

  ---+-------------------------------------------------------

   1 | 0

   2 | 1

   3 | 2, 4, 6, 8, 10, 14, 16, 18, 20, 22, 24, ...

   4 | 3

   5 | 40, 176, 208, 480, 736, 928, 1248, 1440, ... (A327430)

   6 | 5, 7, 9, 11, 15, 17, 19, 21, 23, 27, 29, ... (A080384)

   7 | 12, 30, 56, 84, 90, 132, 154, 182, 220, ...  (A080385)

   8 | 25, 37, 169, 199, 201, 241, 397, 433, ...    (A080386)

   9 | 1122, 1218, 5762, 11330, 12322, 15132, ...   (A327431)

  10 | 13, 31, 41, 57, 85, 91, 133, 155, 177, ...   (A080387)

  11 | 420, 920, 1892, 1978, 2444, 2914, 3198, ...

  12 | 1103, 1703, 2863, 7773, 10603, 15133, ...

  13 | 12324, 37444

  14 | 421, 921, 1123, 1893, 1979, 1981, 2445, ...

  15 | 4960, 6956, 13160, 16354, 18542, 24388, ...

  16 | 11289, 16483, 36657, 62653, 89183

  17 |

  18 | 4961, 6957, 12325, 13161, 16355, 18543, ...

  19 | 16356, 88510, 92004

  20 |

  21 |

  22 | 16357, 88511, 90305, 92005

  23 | 90306

  24 |

  25 |

  26 | 90307

(End)

MATHEMATICA

Table[Count[Table[IntegerQ[Binomial[n, Floor[n/2]]/Binomial[n, j]], {j, 0, n}], True], {n, 0, 500}] (* adapted by Vincenzo Librandi, Jul 29 2017 *)

PROG

(PARI) a(n) = my(b=binomial(n, n\2)); sum(i=0, n, (b % binomial(n, i)) == 0); \\ Michel Marcus, Jul 29 2017

(PARI) a(n) = {if(n==0, return(1)); my(bb = binomial(n, n\2), b = n); res = 2 + !(n%2) + 2 * (n>2 && n%2 == 1); for(i = 2, (n-1)\2, res += 2*(bb%b==0); b *= (n + 1 - i) / i); res} \\ David A. Corneth, Jul 29 2017

(MAGMA) [#[j:j in [0..n]| Binomial(n, Floor(n/2)) mod Binomial(n, j) eq 0]:n in [0..100]]; // Marius A. Burtea, Sep 15 2019

CROSSREFS

Cf. A001405, A000225, A057977, A022292, A020475, A067348, A042996.

Cf. A327430, A080384, A080385, A080386, A327431, A080387.

Cf. A080393.

Sequence in context: A288778 A290139 A317588 * A086369 A337532 A092089

Adjacent sequences:  A080380 A080381 A080382 * A080384 A080385 A080386

KEYWORD

nonn

AUTHOR

Labos Elemer, Mar 12 2003

EXTENSIONS

Edited by Dean Hickerson, Mar 14 2003

Offset corrected by David A. Corneth, Jul 29 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 12:24 EST 2021. Contains 349557 sequences. (Running on oeis4.)