OFFSET
0,4
COMMENTS
Number of compositions (ordered partitions) of n into elements of the set {1,3,4,5,6}.
a(n+1) is the number of multus bitstrings of length n with no runs of 6 ones. - Steven Finch, Mar 25 2020
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135
Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
Index entries for linear recurrences with constant coefficients, signature (1,0,1,1,1,1).
FORMULA
Recurrence: a(n) = a(n-1) + a(n-3) + a(n-4) + a(n-5) + a(n-6).
G.f.: 1/(1-x-x^3-x^4-x^5-x^6).
MATHEMATICA
LinearRecurrence[{1, 0, 1, 1, 1, 1}, {1, 1, 1, 2, 4, 7}, 51] (* G. C. Greubel, Dec 12 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x-x^3-x^4-x^5-x^6) )); // G. C. Greubel, Dec 12 2023
(SageMath)
def A079816_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-x-x^3-x^4-x^5-x^6) ).list()
A079816_list(50) # G. C. Greubel, Dec 12 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Baltic, Feb 19 2003
STATUS
approved