login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186537
G.f.: Sum( x^k/(1-2*x+x^k), k=1..oo).
5
0, 1, 2, 4, 7, 12, 20, 34, 58, 101, 178, 318, 574, 1046, 1920, 3548, 6593, 12312, 23092, 43480, 82154, 155716, 295984, 564050, 1077400, 2062311, 3955186, 7598756, 14622318, 28179338, 54379520, 105071498, 203254164, 393607534, 763001000, 1480458656, 2875091021, 5588152920, 10869906136
OFFSET
0,3
COMMENTS
This arose while studying the properties of A079500.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 257 terms from N. J. A. Sloane)
FORMULA
G.f.: -(1+x^2+ 1/(x-1) )/(1-x)*( 1 + x*(x-1)^3*(1-x+x^3)/( Q(0)- x*(x-1)^3*(1-x+x^3)) ), where Q(k) = (x+1)*(2*x-1)*(1-x)^2 + x^(k+2)*(x+x^2+x^3-2*x^4-1 - x^(k+3) + x^(k+5)) - x*(-1+2*x-x^(k+3))*(1-2*x+x^2+x^(k+4)-x^(k+5))*(-1+4*x-5*x^2+2*x^3 - x^(k+2)- x^(k+5) + 2*x^(k+3) - x^(2*k+5) + x^(2*k+6))/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 14 2013
MAPLE
add( x^k/(1-2*x+x^k), k=1..61); series(%, x, 60); seriestolist(%);
# second Maple program:
b:= proc(n, m) option remember; `if`(n=0, 1,
`if`(m=0, add(b(n-j, j), j=1..n),
add(b(n-j, min(n-j, m)), j=1..min(n, m))))
end:
a:= proc(n) a(n):= `if`(n=0, 0, b(n-1, 0)+a(n-1)) end:
seq(a(n), n=0..40); # Alois P. Heinz, May 01 2014
MATHEMATICA
b[n_, m_] := b[n, m] = If[n == 0, 1, If[m == 0, Sum[b[n-j, j], {j, 1, n}], Sum[b[n-j, Min[n-j, m]], {j, 1, Min[n, m]}]]]; a[n_] := If[n == 0, 0, b[n-1, 0] + a[n-1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 05 2014, after Alois P. Heinz *)
CROSSREFS
First differences give A079500.
Sequence in context: A340217 A289000 A289028 * A079970 A079816 A178937
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 23 2011
STATUS
approved