|
|
A078735
|
|
a(0) = 0, a(1) = 3; a(n+1) = the smallest x such that Fibonacci(x)-Fibonacci(a(n)) is both prime and greater than Fibonacci(a(n))-Fibonacci(a(n-1)).
|
|
1
|
|
|
0, 3, 5, 9, 13, 18, 37, 384, 569, 2760, 3293
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Some of the larger entries may only correspond to probable primes.
|
|
LINKS
|
Table of n, a(n) for n=0..10.
|
|
FORMULA
|
A078727(n) = Fibonacci(a(n))-Fibonacci(a(n-1))
|
|
MATHEMATICA
|
a[0] = 0; a[1] = 3; a[n_] := a[n] = Block[{d = Fibonacci[a[n - 1]] - Fibonacci[a[n - 2]], f = Fibonacci[a[n - 1]], k = a[n - 1] + 1}, While[Fibonacci[k] - f <= d || !PrimeQ[Fibonacci[k] - f], k++ ]; k]; Do[ Print[ a[n]], {n, 0, 10}] (* Robert G. Wilson v *)
|
|
CROSSREFS
|
A more compact version of A078727.
Cf. A000045.
Sequence in context: A071404 A074133 A215909 * A212530 A004132 A207187
Adjacent sequences: A078732 A078733 A078734 * A078736 A078737 A078738
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jack Brennen, Dec 20 2002
|
|
EXTENSIONS
|
a(10) from Robert G. Wilson v, Nov 30 2005
|
|
STATUS
|
approved
|
|
|
|