%I
%S 0,3,5,9,13,18,37,384,569,2760,3293
%N a(0) = 0, a(1) = 3; a(n+1) = the smallest x such that Fibonacci(x)Fibonacci(a(n)) is both prime and greater than Fibonacci(a(n))Fibonacci(a(n1)).
%C Some of the larger entries may only correspond to probable primes.
%F A078727(n) = Fibonacci(a(n))Fibonacci(a(n1))
%t a[0] = 0; a[1] = 3; a[n_] := a[n] = Block[{d = Fibonacci[a[n  1]]  Fibonacci[a[n  2]], f = Fibonacci[a[n  1]], k = a[n  1] + 1}, While[Fibonacci[k]  f <= d  !PrimeQ[Fibonacci[k]  f], k++ ]; k]; Do[ Print[ a[n]], {n, 0, 10}] (* _Robert G. Wilson v_ *)
%Y A more compact version of A078727.
%Y Cf. A000045.
%K nonn
%O 0,2
%A _Jack Brennen_, Dec 20 2002
%E a(10) from _Robert G. Wilson v_, Nov 30 2005
