login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071404
Which nonsquarefree number is a square number? a(n)-th nonsquarefree number equals n^2, the n-th square.
2
1, 3, 5, 9, 13, 18, 25, 31, 39, 46, 55, 66, 76, 86, 99, 112, 125, 142, 157, 172, 187, 206, 225, 244, 264, 285, 307, 328, 353, 377, 400, 429, 453, 480, 507, 534, 562, 593, 623, 656, 691, 725, 762, 795, 831, 867, 904, 941, 977, 1019, 1059, 1101, 1145, 1185, 1226
OFFSET
2,2
LINKS
FORMULA
A013929(a(n)) = A000290(n) = n^2.
a(n) = kn^2 + O(n), where k = 1 - 6/Pi^2. - Charles R Greathouse IV, Sep 13 2013
a(n) = -Sum_{k=2..n} mu(k)*floor((n/k)^2). - Chai Wah Wu, Jul 20 2024
EXAMPLE
The first, 3rd, 5th, 9th, and 13th nonsquarefree numbers are 4, 9, 16, 25, and 36, respectively.
MATHEMATICA
Position[Select[Range[3200], !SquareFreeQ[#] &], _?(IntegerQ[Sqrt[#]] &)][[;; , 1]] (* Amiram Eldar, Mar 04 2024 *)
PROG
(PARI) lista(nn) = {sqfs = select(n->(1-issquarefree(n)), vector(nn, i, i)); for (i = 1, #sqfs, if (issquare(sqfs[i]), print1(i, ", ")); ); } \\ Michel Marcus, Sep 12 2013
(PARI) a(n)=n^2-sum(k=1, n, n^2\k^2*moebius(k)) \\ Charles R Greathouse IV, Sep 13 2013
(Python)
from sympy import mobius
def A071404(n): return -sum(mobius(k)*(n**2//k**2) for k in range(2, n+1)) # Chai Wah Wu, Jul 20 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, May 24 2002
EXTENSIONS
Offset changed by Charles R Greathouse IV, Sep 13 2013
STATUS
approved