OFFSET
1,2
FORMULA
Let y(n, x)=sum(k=0, n, (n+k)!*(x/2)^k/((n-k)!*k!)) then : a(3*n)=(1/2)*(y(n, 4)+y(n-1, 4)); a(3*n+1)=y(n, 4); a(3*n+2)=(1/2)*(y(n+1, 4)-y(n, 4))
MATHEMATICA
Numerator[Convergents[Sqrt[E], 30]] (* Harvey P. Dale, Sep 23 2011 *)
PROG
(PARI) a(n)=component(component(contfracpnqn(contfrac(exp(1/2), n)), 1), 1)
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Benoit Cloitre, Dec 20 2002
STATUS
approved