login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042669 Denominators of continued fraction convergents to sqrt(864). 2
1, 2, 3, 5, 28, 33, 457, 490, 2907, 3397, 6304, 16005, 934594, 1885193, 2819787, 4704980, 26344687, 31049667, 429990358, 461040025, 2735190483, 3196230508, 5931420991, 15059072490, 879357625411, 1773774323312, 2653131948723, 4426906272035, 24787663308898 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,940898,0,0,0,0,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^22 -2*x^21 +3*x^20 -5*x^19 +28*x^18 -33*x^17 +457*x^16 -490*x^15 +2907*x^14 -3397*x^13 +6304*x^12 -16005*x^11 -6304*x^10 -3397*x^9 -2907*x^8 -490*x^7 -457*x^6 -33*x^5 -28*x^4 -5*x^3 -3*x^2 -2*x -1) / ((x^4 -6*x^3 +13*x^2 -6*x +1)*(x^4 -10*x^2 +1)*(x^4 +10*x^2 +1)*(x^4 +6*x^3 +13*x^2 +6*x +1)*(x^8 +10*x^6 +99*x^4 +10*x^2 +1)). - Colin Barker, Dec 20 2013
a(n) = 940898*a(n-12) - a(n-24) for n>23. - Vincenzo Librandi, Dec 20 2013
MATHEMATICA
Denominator[Convergents[Sqrt[864], 30]] (* Vincenzo Librandi, Dec 20 2013 *)
PROG
(Magma) I:=[1, 2, 3, 5, 28, 33, 457, 490, 2907, 3397, 6304, 16005, 934594, 1885193, 2819787, 4704980, 26344687, 31049667, 429990358, 461040025, 2735190483, 3196230508, 5931420991, 15059072490]; [n le 24 select I[n] else 940898*Self(n-12)-Self(n-24): n in [1..40]]; // Vincenzo Librandi, Dec 20 2013
CROSSREFS
Sequence in context: A141566 A247094 A078736 * A178376 A041585 A042935
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Dec 20 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 23:59 EDT 2024. Contains 375984 sequences. (Running on oeis4.)