login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077889
Expansion of 1/( (1-x)*(1 + x^2 + x^3) ).
3
1, 1, 0, -1, 0, 2, 2, -1, -3, 0, 5, 4, -4, -8, 1, 13, 8, -13, -20, 6, 34, 15, -39, -48, 25, 88, 24, -112, -111, 89, 224, 23, -312, -246, 290, 559, -43, -848, -515, 892, 1364, -376, -2255, -987, 2632, 3243, -1644, -5874, -1598, 7519, 7473, -5920, -14991, -1552, 20912, 16544, -19359, -37455, 2816, 56815
OFFSET
0,6
COMMENTS
The Gi1 sums, see A180662 for the definition of these sums, of triangle A101950 equal the terms of this sequence. - Johannes W. Meijer, Aug 06 2011
LINKS
Eunmi Choi, Yuna Oh, Diagonal sums in negative trinomial table, Korean J. Math (2019) Vol. 27, No. 3, 723-734.
FORMULA
a(n) = Sum_{k=0..floor(n/4)} A101950(n-3*k, k).
a(n) = (1 + 2*A077962(n) + 2*A077962(n-1) + A077962(n-2))/3. - G. C. Greubel, Dec 30 2019
a(n)-a(n-1) = A077962(n). - R. J. Mathar, Mar 14 2021
MAPLE
A101950 := proc(n, k) local j, k1: add((-1)^((n-j)/2)*binomial((n+j)/2, j)*(1+(-1)^(n+j))* binomial(j, k)/2, j=0..n) end: A077889 := proc(n): add(A101950(n-3*k, k), k=0..floor(n/4)) end: seq(A077889(n), n=0..60); # Johannes W. Meijer, Aug 06 2011
MATHEMATICA
CoefficientList[Series[1/((1-x)*(1+x^2+x^3)), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, -1, 0, 1}, {1, 1, 0, -1}, 60] (* Harvey P. Dale, Jul 14 2017 *)
PROG
(PARI) my(x='x+O('x^60)); Vec(1/((1-x)*(1+x^2+x^3))) \\ G. C. Greubel, Dec 30 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)*(1+x^2+x^3)) )); // G. C. Greubel, Dec 30 2019
(Sage)
def A077952_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x)*(1+x^2+x^3)) ).list()
A077952_list(60) # G. C. Greubel, Dec 30 2019
(GAP) a:=[1, 1, 0, -1];; for n in [5..60] do a[n]:=a[n-1]-a[n-2]+a[n-4]; od; a; # G. C. Greubel, Dec 30 2019
CROSSREFS
Sequence in context: A362312 A333707 A077653 * A305805 A230260 A193262
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved