OFFSET
0,6
COMMENTS
The Gi1 sums, see A180662 for the definition of these sums, of triangle A101950 equal the terms of this sequence. - Johannes W. Meijer, Aug 06 2011
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10000
Eunmi Choi, Yuna Oh, Diagonal sums in negative trinomial table, Korean J. Math (2019) Vol. 27, No. 3, 723-734.
Index entries for linear recurrences with constant coefficients, signature (1,-1,0,1).
FORMULA
a(n) = Sum_{k=0..floor(n/4)} A101950(n-3*k, k).
a(n)-a(n-1) = A077962(n). - R. J. Mathar, Mar 14 2021
MAPLE
A101950 := proc(n, k) local j, k1: add((-1)^((n-j)/2)*binomial((n+j)/2, j)*(1+(-1)^(n+j))* binomial(j, k)/2, j=0..n) end: A077889 := proc(n): add(A101950(n-3*k, k), k=0..floor(n/4)) end: seq(A077889(n), n=0..60); # Johannes W. Meijer, Aug 06 2011
MATHEMATICA
CoefficientList[Series[1/((1-x)*(1+x^2+x^3)), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, -1, 0, 1}, {1, 1, 0, -1}, 60] (* Harvey P. Dale, Jul 14 2017 *)
PROG
(PARI) my(x='x+O('x^60)); Vec(1/((1-x)*(1+x^2+x^3))) \\ G. C. Greubel, Dec 30 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)*(1+x^2+x^3)) )); // G. C. Greubel, Dec 30 2019
(Sage)
def A077952_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x)*(1+x^2+x^3)) ).list()
A077952_list(60) # G. C. Greubel, Dec 30 2019
(GAP) a:=[1, 1, 0, -1];; for n in [5..60] do a[n]:=a[n-1]-a[n-2]+a[n-4]; od; a; # G. C. Greubel, Dec 30 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved