The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077653 a(1)=1, a(2)=2, a(3)=2, a(n) = abs(a(n-1)-a(n-2)-a(n-3)). 6
 1, 2, 2, 1, 3, 0, 4, 1, 3, 2, 2, 3, 1, 4, 0, 5, 1, 4, 2, 3, 3, 2, 4, 1, 5, 0, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0, 7, 1, 6, 2, 5, 3, 4, 4, 3, 5, 2, 6, 1, 7, 0, 8, 1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 1, 8, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, 1, 9, 2, 8, 3, 7, 4, 6, 5, 5, 6, 4, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Conjecture : let z(1)=x; z(2)=y; z(3)= z; z(n)=abs(z(n-1)-z(n-2)-z(n-3)) if z(n) is unbounded (i.e. x,y,z are such that z(n) doesn't reach a cycle of length 2), then there are 2 integers n(x,y,z) and w(x,y,z) such that M(n) = floor(sqrt(n+w(x,y,z))) for n>n(,x,y,z) where M(n) = Max ( a(k) : 1<=k<=n ). As example : w(1,2,2)=9 n(1,2,2)=4; w(1,2,4)=29 n(1,2,4)=4; w(1,2,8)=157 n(1,2,8)=9 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA a(n)/sqrt(n) is bounded. More precisely, let M(n) = Max ( a(k) : 1<=k<=n ); then M(n)= floor(sqrt(n+9)) for n>4 PROG (Haskell) a077653 n = a077653_list !! (n-1) a077653_list = 1 : 2 : 2 : zipWith3 (\u v w -> abs (w - v - u))                a077653_list (tail a077653_list) (drop 2 a077653_list) -- Reinhard Zumkeller, Oct 11 2014 CROSSREFS Cf. A077623, A079623, A079624, A080096, A088226. Sequence in context: A117046 A268192 A333707 * A077889 A305805 A230260 Adjacent sequences:  A077650 A077651 A077652 * A077654 A077655 A077656 KEYWORD nonn AUTHOR Benoit Cloitre, Dec 02 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 18:08 EDT 2020. Contains 334630 sequences. (Running on oeis4.)