login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077652 Not necessarily palindromic primes of which initial and terminal decimal digits are identical. 3
2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 1021, 1031, 1051, 1061, 1091, 1151, 1171, 1181, 1201, 1231, 1291, 1301, 1321, 1361, 1381, 1451, 1471, 1481, 1511, 1531, 1571, 1601, 1621, 1721, 1741, 1801, 1811 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

1021 is the smallest of these not to be palindromatic. [Jonathan Vos Post, Nov 02 2013]

All palindromic primes (A002385) except 11 have an odd number of digits, therefore all terms > 11 with an even number of digits are non-palindromic in this sequence. - M. F. Hasler, Nov 02 2013

LINKS

Bruno Berselli, Table of n, a(n) for n = 1..1000

MATHEMATICA

Do[s1=First[IntegerDigits[Prime[n]]]; s2=Last[IntegerDigits[Prime[n]]]; If[Equal[s1, s2], Print[Prime[n]]], {n, 1, 1000}]

itdQ[n_]:=Module[{idn=IntegerDigits[n]}, idn[[1]]==idn[[-1]]]; Select[Prime[ Range[ 500]], itdQ] (* Harvey P. Dale, Apr 12 2013 *)

PROG

(MAGMA) [ p: p in PrimesUpTo(2000) | P[#P] eq P[1] where P is Intseq(p) ];  // Bruno Berselli, Jul 26 2011

(PARI) is(n)=digits(n)[1]==n%10&&isprime(n) \\ - M. F. Hasler, Nov 02 2013

CROSSREFS

Cf. A000030, A000040, A227858.

Sequence in context: A234912 A083137 A180440 * A002385 A069217 A083139

Adjacent sequences:  A077649 A077650 A077651 * A077653 A077654 A077655

KEYWORD

base,nonn

AUTHOR

Labos Elemer, Nov 19 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 17 09:43 EST 2018. Contains 318193 sequences. (Running on oeis4.)