Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Mar 01 2023 06:41:03
%S 2,3,5,7,11,101,131,151,181,191,313,353,373,383,727,757,787,797,919,
%T 929,1021,1031,1051,1061,1091,1151,1171,1181,1201,1231,1291,1301,1321,
%U 1361,1381,1451,1471,1481,1511,1531,1571,1601,1621,1721,1741,1801,1811
%N Primes whose initial and terminal decimal digits are identical.
%C 1021 is the smallest of these not to be palindromic. - _Jonathan Vos Post_, Nov 02 2013
%C All palindromic primes (A002385) except 11 have an odd number of digits, therefore all terms > 11 with an even number of digits are non-palindromic in this sequence. - _M. F. Hasler_, Nov 02 2013
%H Bruno Berselli, <a href="/A077652/b077652.txt">Table of n, a(n) for n = 1..1000</a>
%t Do[s1=First[IntegerDigits[Prime[n]]]; s2=Last[IntegerDigits[Prime[n]]]; If[Equal[s1, s2], Print[Prime[n]]], {n, 1, 1000}]
%t itdQ[n_]:=Module[{idn=IntegerDigits[n]},idn[[1]]==idn[[-1]]]; Select[Prime[ Range[ 500]], itdQ] (* _Harvey P. Dale_, Apr 12 2013 *)
%o (Magma) [ p: p in PrimesUpTo(2000) | P[#P] eq P[1] where P is Intseq(p) ]; // Bruno Berselli, Jul 26 2011
%o (PARI) is(n)=digits(n)[1]==n%10&&isprime(n) \\ _M. F. Hasler_, Nov 02 2013
%Y Cf. A000030, A000040, A227858.
%K base,nonn
%O 1,1
%A _Labos Elemer_, Nov 19 2002