login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077322
Initial terms of rows of A077321.
5
2, 3, 7, 17, 11, 43, 113, 89, 109, 131, 23, 157, 53, 449, 571, 593, 647, 487, 761, 821, 1303, 1013, 47, 1033, 1451, 1613, 2539, 1373, 59, 1831, 2543, 1889, 3499, 3299, 2591, 2557, 149, 4637, 6163, 3761, 83, 4243, 173, 3917, 6571, 5843, 283, 4273, 5783, 6551
OFFSET
1,1
MAPLE
A077322 := proc(nmax) local n, a, T, i, p ; T := [] ; a := [] ; n :=1 ; while nops(a) < nmax do for i from 1 to n do p := 2 ; while ( p in T ) or (p-1) mod n <> 0 do p := nextprime(p) ; od ; T := [op(T), p] ; if i = 1 then a := [op(a), p] ; fi ; od ; n := n+1 ; od ; RETURN(a) ; end: A077322(50) ; # R. J. Mathar, Feb 03 2007
MATHEMATICA
nrows = 50;
A077321[nmax_] := Module[{n = 1, a = {}, i, p}, While[ Length[a] < nmax, For[i = 1, i <= n, i++, p = 2; While[MemberQ[a, p] || Mod[p - 1, n] != 0, p = NextPrime[p]]; a = Append[a, p]]; n = n + 1]; Return[a]];
T = A077321[nmax = (nrows^2 - nrows + 2)/2];
a[n_] := T[[(n^2 - n + 2)/2]];
Table[a[n], {n, 1, nrows}] (* Jean-François Alcover, May 30 2023, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Nov 04 2002
EXTENSIONS
More terms from R. J. Mathar, Feb 03 2007
STATUS
approved