login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077320 Triangle in which n-th row contains n smallest multiples of the n-th prime. 3
2, 3, 6, 5, 10, 15, 7, 14, 21, 28, 11, 22, 33, 44, 55, 13, 26, 39, 52, 65, 78, 17, 34, 51, 68, 85, 102, 119, 19, 38, 57, 76, 95, 114, 133, 152, 23, 46, 69, 92, 115, 138, 161, 184, 207, 29, 58, 87, 116, 145, 174, 203, 232, 261, 290 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
0. A000040 (primes) gives initial terms of rows.
1. A033286 contains the final terms of rows.
2. Sum of the n-th row = prime(n)*A000217(n), by definition.
3. a(A000217(n) + 1) = prime(n+1), by definition.
LINKS
FORMULA
T(n,k) = k*prime(n) with 1 <= k <= n. - Bruno Berselli, Sep 05 2017
EXAMPLE
From Bruno Berselli, Sep 05 2017: (Start)
Triangle begins:
2;
3, 6;
5, 10, 15;
7, 14, 21, 28;
11, 22, 33, 44, 55;
13, 26, 39, 52, 65, 78;
17, 34, 51, 68, 85, 102, 119;
19, 38, 57, 76, 95, 114, 133, 152;
23, 46, 69, 92, 115, 138, 161, 184, 207;
29, 58, 87, 116, 145, 174, 203, 232, 261, 290;
31, 62, 93, 124, 155, 186, 217, 248, 279, 310, 341;
37, 74, 111, 148, 185, 222, 259, 296, 333, 370, 407, 444;
41, 82, 123, 164, 205, 246, 287, 328, 369, 410, 451, 492, 533;
43, 86, 129, 172, 215, 258, 301, 344, 387, 430, 473, 516, 559, 602, etc.
(End)
MATHEMATICA
Table[Prime[n]*Range[n], {n, 10}] // Flatten (* Ivan Neretin, May 02 2019 *)
CROSSREFS
Row sums give A196421. - Omar E. Pol, Mar 12 2012
Sequence in context: A350801 A073740 A239956 * A339195 A344085 A019565
KEYWORD
nonn,tabl,easy
AUTHOR
Amarnath Murthy, Nov 04 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 02:17 EST 2024. Contains 370308 sequences. (Running on oeis4.)