login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196421
a(n) = prime(n)*T(n), where T = A000217.
6
2, 9, 30, 70, 165, 273, 476, 684, 1035, 1595, 2046, 2886, 3731, 4515, 5640, 7208, 9027, 10431, 12730, 14910, 16863, 19987, 22908, 26700, 31525, 35451, 38934, 43442, 47415, 52545, 62992, 69168, 76857, 82705, 93870, 100566, 110371, 120783, 130260, 141860
OFFSET
1,1
COMMENTS
This sequence is mentioned in A077320. - Omar E. Pol, Mar 12 2012
LINKS
FORMULA
a(n) ~ 0.5 n^3 log n. - Charles R Greathouse IV, Nov 22 2011
a(n) = A000040(n)*A000217(n). - Omar E. Pol, Mar 12 2012
EXAMPLE
The 4th prime is 7, the 4th triangular number is 10, therefore a(4) = 7*10 = 70.
MATHEMATICA
With[{nn=60}, Prime[Range[nn]]Accumulate[Range[nn]]]
PROG
(PARI) a(n)=prime(n)*binomial(n+1, 2) \\ Charles R Greathouse IV, Nov 22 2011
(Python)
from sympy import prime
def a(n): return prime(n) * n*(n+1)//2
print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Sep 01 2022
CROSSREFS
Row sums of triangle A077320. - Omar E. Pol, Mar 12 2012
Subsequence of A085783. - Michel Marcus, May 15 2018
Sequence in context: A079783 A182975 A228932 * A352405 A372152 A056778
KEYWORD
nonn
AUTHOR
Harvey P. Dale, Oct 15 2011
STATUS
approved