

A077321


Rearrange primes so as to form a triangle in which nth row contains the n smallest primes == 1 (mod n) which have not occurred earlier.


5



2, 3, 5, 7, 13, 19, 17, 29, 37, 41, 11, 31, 61, 71, 101, 43, 67, 73, 79, 97, 103, 113, 127, 197, 211, 239, 281, 337, 89, 137, 193, 233, 241, 257, 313, 353, 109, 163, 181, 199, 271, 307, 379, 397, 433, 131, 151, 191, 251, 311, 331, 401, 421, 431, 461, 23, 419, 463, 617
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



EXAMPLE

Triangle begins:
2
3 5
7 13 19
17 29 37 41
11 31 61 71 101
...


MAPLE

A077321 := proc(nmax) local n, a, i, p; a := []; n :=1; while nops(a) < nmax do for i from 1 to n do p := 2; while ( p in a ) or (p1) mod n <> 0 do p := nextprime(p); od; a := [op(a), p]; od; n := n+1; od; RETURN(a); end: A077321(100); # R. J. Mathar, Feb 03 2007


MATHEMATICA

A077321[nmax_] := Module[{n = 1, a = {}, i, p}, While[ Length[a] < nmax, For[i = 1, i <= n, i++, p = 2; While[ MemberQ[a, p]  Mod[p  1, n] != 0, p = NextPrime[p]]; a = Append[a, p]]; n = n + 1]; Return[a]];


CROSSREFS



KEYWORD



AUTHOR



EXTENSIONS



STATUS

approved



