login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082011
Square array read by antidiagonals, alternating upwards and downwards: T(1,1) = 2 and every other entry is the smallest prime not already used such that the n-th antidiagonal sum is a multiple of n.
5
2, 3, 5, 7, 13, 19, 11, 17, 23, 29, 31, 37, 41, 43, 53, 47, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 113, 107, 109, 127, 131, 137, 139, 149, 157, 151, 163, 167, 173, 179, 181, 191, 197, 227, 193, 199, 211, 223, 229, 233, 239, 241, 251, 271, 257, 263, 269, 277
OFFSET
1,1
COMMENTS
This is the boustrophedon method of filling an array.
LINKS
EXAMPLE
Square array begins:
2, 3, 19, 11, 53, 47, ...
5, 13, 17, 43, 59, 103, ...
7, 23, 41, 61, 101, 127, ...
29, 37, 67, 97, 131, 181, ...
31, 71, 89, 137, 179, 229, ...
73, 83, 139, 173, 233, 283, ...
T(2,2) = 13 and not 11, because otherwise T(1,3)+7+11 = 0 (mod 3) would not be satisfied for any prime.
MAPLE
b:= proc(t) false end: T:= proc(n, k) local h, t, l, m; if n<1 or k<1 then t:=0 else h:= 1- 2* irem(n+k, 2); m:= n+k-1; l:= add(T(n+h*t, k-h*t), t=1..m-1); t:=3; while b(t) or (h=1 and (n=2 and igcd(t+l, m)>1 or n=1 and irem(t+l, m)<>0)) or (h=-1 and (k=2 and igcd(t+l, m)>1 or k=1 and irem(t+l, m)<>0)) do t:= nextprime(t) od fi; b(t):= true; T(n, k):=t end: T(1, 1):=2: seq(`if`(irem(d, 2)=1, seq(T(1+d-k, k), k=1..d), seq(T(n, 1+d-n), n=1..d)), d=1..15); # Alois P. Heinz, Oct 10 2009
MATHEMATICA
Clear[b]; b[_] = False; T[n_, k_] := Module[{h, t, l, m}, If[n<1 || k<1, t = 0, h = 1 - 2*Mod[n+k, 2]; m = n+k-1; l = Sum[T[n + h*t, k - h*t], {t, 1, m-1}]; t = 3; While[b[t] || (h == 1 && (n == 2 && GCD[t+l, m]>1 || n == 1 && Mod[t+l, m] != 0)) || (h == -1 && (k == 2 && GCD[t+l, m]>1 || k == 1 && Mod[t+l, m] != 0)), t = NextPrime[t]]]; b[t] = True; T[n, k] = t]; T[1, 1] = 2; Table[If[Mod[d, 2] == 1, Table[T[1+d-k, k], {k, 1, d}], Table [T[n, 1+d-n], {n, 1, d}]], {d, 1, 15}] // Flatten (* Jean-François Alcover, Jun 10 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Amarnath Murthy, Apr 05 2003
EXTENSIONS
Edited with more terms by Alois P. Heinz, Oct 10 2009
STATUS
approved