login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154431
Primes p such that 5p^2 - p + 1 is prime.
2
2, 3, 7, 17, 19, 29, 43, 73, 107, 199, 229, 359, 397, 409, 443, 449, 479, 563, 593, 607, 617, 677, 787, 887, 953, 1013, 1069, 1087, 1109, 1213, 1277, 1279, 1283, 1367, 1409, 1549, 1613, 1627, 1667, 1759, 1867, 1877, 1993, 2003, 2129, 2269, 2297, 2423, 2539
OFFSET
1,1
LINKS
EXAMPLE
For p=2, 5p^2 - p + 1 = 19 (a prime);
for p=107, 5p^2 - p + 1 = 57139 (a prime);
for p=199, 5p^2 - p + 1 = 197807 (a prime).
MAPLE
a:= proc (n) if isprime(n) and isprime(5*n^2-n+1) then n end if end proc: seq(a(n), n = 2 .. 3000); # Emeric Deutsch, Jan 20 2009
MATHEMATICA
Select[Prime[Range[1000]], PrimeQ[(5#^2 - # + 1)] &] (* Vincenzo Librandi, Oct 14 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(3000)|IsPrime(5*p^2 - p + 1)]; // Vincenzo Librandi, Oct 14 2012
CROSSREFS
Cf. A154432.
Sequence in context: A077322 A174359 A160513 * A350118 A256917 A089144
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 09 2009
EXTENSIONS
Extended by Emeric Deutsch, Jan 20 2009
STATUS
approved