login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350118
Primes p for which the smallest m such that p*2^m + 1 is prime increases. Sequence terminates with the smallest prime Sierpiński number.
1
2, 3, 7, 17, 19, 31, 47, 383, 2897, 3061, 5297, 7013, 10223
OFFSET
1,1
COMMENTS
The smallest prime Sierpiński number is likely to be 271129.
Related to A058887: this sequence is A058887 with repeated values removed. The following list shows that relation between these two sequences:
a(2) = 3, A350119(2) = 1 => A058887(0..0) = 3;
a(3) = 7, A350119(3) = 2 => A058887(1..1) = 7;
a(4) = 17, A350119(4) = 3 => A058887(2..2) = 17;
a(5) = 19, A350119(5) = 6 => A058887(3..5) = 19;
a(6) = 31, A350119(6) = 8 => A058887(6..7) = 31;
a(7) = 47, A350119(7) = 583 => A058887(8..582) = 47;
a(8) = 383, A350119(8) = 6393 => A058887(583..6392) = 383;
...
a(N) is the smallest prime Sierpiński number, A350119(N) = -1 => A058887(k) = a(N) for all k >= A350119(N-1).
EXAMPLE
Let b(p) be the smallest m such that p*2^m + 1 is prime. We have a(1) = 2 with b(2) = 0.
The least prime p such that b(p) > 0 is p = 3 with b(3) = 1, so a(2) = 3.
The least prime p such that b(p) > 1 is p = 7 with b(7) = 2, so a(3) = 7.
The least prime p such that b(p) > 2 is p = 17 with b(17) = 3, so a(4) = 17.
The least prime p such that b(p) > 3 is p = 19 with b(19) = 6, so a(5) = 19.
The least prime p such that b(p) > 6 is p = 31 with b(31) = 8, so a(6) = 31.
The least prime p such that b(p) > 8 is p = 47 with b(47) = 583, so a(7) = 47.
PROG
(PARI) b(p) = for(k=0, oo, if(isprime(p*2^k+1), return(k)))
list(lim) = if(lim>=2, my(v=[2], r=0); forprime(p=2, lim, if(b(p)>r, r=b(p); v=concat(v, p))); v)
CROSSREFS
Cf. A058887, A057192, A350119, A064699, A076336 (Sierpiński numbers).
Sequence in context: A174359 A160513 A154431 * A256917 A089144 A171430
KEYWORD
nonn,fini,hard,more
AUTHOR
Jianing Song, Dec 14 2021
STATUS
approved