login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that 5p^2 - p + 1 is prime.
2

%I #11 Sep 08 2022 08:45:40

%S 2,3,7,17,19,29,43,73,107,199,229,359,397,409,443,449,479,563,593,607,

%T 617,677,787,887,953,1013,1069,1087,1109,1213,1277,1279,1283,1367,

%U 1409,1549,1613,1627,1667,1759,1867,1877,1993,2003,2129,2269,2297,2423,2539

%N Primes p such that 5p^2 - p + 1 is prime.

%H Vincenzo Librandi, <a href="/A154431/b154431.txt">Table of n, a(n) for n = 1..1000</a>

%e For p=2, 5p^2 - p + 1 = 19 (a prime);

%e for p=107, 5p^2 - p + 1 = 57139 (a prime);

%e for p=199, 5p^2 - p + 1 = 197807 (a prime).

%p a:= proc (n) if isprime(n) and isprime(5*n^2-n+1) then n end if end proc: seq(a(n), n = 2 .. 3000); # _Emeric Deutsch_, Jan 20 2009

%t Select[Prime[Range[1000]], PrimeQ[(5#^2 - # + 1)] &] (* _Vincenzo Librandi_, Oct 14 2012 *)

%o (Magma) [p: p in PrimesUpTo(3000)|IsPrime(5*p^2 - p + 1)]; // _Vincenzo Librandi_, Oct 14 2012

%Y Cf. A154432.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Jan 09 2009

%E Extended by _Emeric Deutsch_, Jan 20 2009