login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077068
Semiprimes of the form prime + 1.
8
4, 6, 14, 38, 62, 74, 158, 194, 278, 314, 398, 422, 458, 542, 614, 662, 674, 734, 758, 878, 998, 1094, 1154, 1202, 1214, 1238, 1322, 1382, 1454, 1622, 1658, 1754, 1874, 1934, 1994, 2018, 2138, 2342, 2474, 2558, 2594, 2798, 2858, 2918, 3062, 3218, 3254
OFFSET
1,1
COMMENTS
a(n) = A005383(n)+1 = 2*A005382(n).
There are 672 semiprimes of form prime+1 below 100000.
a(n) = A232342(n) + A077065(n). - Reinhard Zumkeller, Dec 16 2013
LINKS
FORMULA
A010051(A008864(n)/2) = A064911(A008864(n)) = 1. - Reinhard Zumkeller, Nov 22 2013
EXAMPLE
A001358(25)=74=2*37 is a term as 74=A000040(21)+1=73+1.
MATHEMATICA
Select[Range[6000], Plus@@Last/@FactorInteger[#]==2&&PrimeQ[#-1]&] (* Vladimir Joseph Stephan Orlovsky, May 08 2011 *)
Select[ Prime@ Range@ 460 +1, PrimeOmega@# == 2 &] (* Robert G. Wilson v, Feb 18 2014 *)
PROG
(Haskell)
a077068 n = a077068_list !! (n-1)
a077068_list = filter ((== 1) . a010051 . (`div` 2)) a008864_list
-- Reinhard Zumkeller, Nov 22 2013
(PARI) [x+1|x<-primes(10^5), bigomega(x+1)==2] \\ Charles R Greathouse IV, Nov 22 2013
(PARI) is(n)=isprime(n-1) && isprime(n\2) \\ Charles R Greathouse IV, Mar 20 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 23 2002
STATUS
approved