

A076164


Numbers n such that sum of squares of even digits of n equals sum of squares of odd digits of n.


1



0, 11112, 11121, 11211, 11356, 11365, 11536, 11563, 11635, 11653, 12111, 13156, 13165, 13516, 13561, 13615, 13651, 15136, 15163, 15316, 15361, 15613, 15631, 16135, 16153, 16315, 16351, 16513, 16531, 21111, 31156, 31165, 31516, 31561
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The minimal number of digits in any nonzero term is 5.
Numbers such that the sum of even digits equals the sum of odd digits are listed in A036301.


LINKS



EXAMPLE

11356 is in the sequence because 1^2 + 1^2 + 3^2 + 5^2 = 6^2.


MATHEMATICA

oeQ[n_]:=Module[{idn=IntegerDigits[n]}, Total[Select[idn, OddQ]^2]== Total[ Select[ idn, EvenQ]^2]]; Select[Range[0, 99999], oeQ] (* Harvey P. Dale, Sep 23 2011 *)


PROG

(PARI) is(n)=!vecsum(apply(d>d^2*(1)^d, digits(n))) \\ M. F. Hasler, May 18 2018


CROSSREFS



KEYWORD

nonn,base


AUTHOR



EXTENSIONS



STATUS

approved



