login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076165
Numbers n such that sum of cubes of even digits of n equals sum of cubes of odd digits of n.
3
14467, 14476, 14647, 14674, 14746, 14764, 16447, 16474, 16744, 17446, 17464, 17644, 41467, 41476, 41647, 41674, 41746, 41764, 44167, 44176, 44617, 44671, 44716, 44761, 46147, 46174, 46417, 46471, 46714, 46741, 47146, 47164, 47416
OFFSET
1,1
COMMENTS
Minimal number of digits in n is 5.
n such that sum of even digits equals sum of odd digits in A036301.
LINKS
EXAMPLE
14467 is OK because 1^3+7^3=4^3+4^3+6^3.
MATHEMATICA
oeQ[n_]:=Module[{idn = IntegerDigits[n]}, Total[Select[idn, OddQ]^3] == Total[Select[idn, EvenQ]^3]]; Select[Range[100000], oeQ] (* Harvey P. Dale, Sep 23 2011 *)
PROG
(PARI) ok(n)={my(v=digits(n)); sum(i=1, #v, v[i]^3*if(v[i]%2, 1, -1))==0} \\ Andrew Howroyd, Dec 10 2018
CROSSREFS
Sequence in context: A238060 A210050 A203815 * A376415 A234119 A253116
KEYWORD
nonn,base
AUTHOR
Zak Seidov, Nov 01 2002
STATUS
approved