login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261778
Positive numbers n such that (digitsum(n))^2 equals (product of digits(n))^3.
1
1, 11114, 11141, 11411, 14111, 41111, 111122, 111212, 111221, 112112, 112121, 112211, 121112, 121121, 121211, 122111, 211112, 211121, 211211, 212111, 221111, 1111111111111111119, 1111111111111111191, 1111111111111111911, 1111111111111119111, 1111111111111191111, 1111111111111911111
OFFSET
1,2
COMMENTS
Sequence is infinite because it contains all the numbers made of k fours and 8^k-4k ones. - Giovanni Resta, Sep 01 2015
LINKS
Charles R Greathouse IV, GP script
EXAMPLE
11114 appears in the sequence because (1 + 1 + 1 + 1 + 4)^2 = (1*1*1*1*4)^3 = 64.
111122 appears in the sequence because (1 + 1 + 1 + 1 + 2 + 2)^2 = (1*1*1*1*2*2)^3 = 64.
MATHEMATICA
Select[Range[20000000], Plus @@ IntegerDigits[#]^2 == Times @@ IntegerDigits[#]^3 &]
PROG
(PARI) for(n = 1, 1000000, d = digits(n); if((sumdigits(n))^2 == prod(i = 1, #d, d[i])^3, print1(n, ", ")));
(PARI) proddigits(n)=my(d=digits(n)); prod(i=1, #d, d[i])
is(n)=my(s=sumdigits(n)); if(!ispower(s, 3), return(0)); s^2==proddigits(n)^3 \\ Charles R Greathouse IV, Aug 31 2015
(Magma) [n : n in [1..1000000] | (&+Intseq(n))^2 eq (&*Intseq(n))^3 ];
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Aug 31 2015
EXTENSIONS
a(22)-a(27) from Charles R Greathouse IV, Aug 31 2015
STATUS
approved