login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261777
Number of compositions of n where the (possibly scattered) maximal subsequence of part i with multiplicity j is marked with i words of length j over an n-ary alphabet whose letters appear in alphabetical order and all n letters occur exactly once in the composition.
2
1, 1, 3, 19, 115, 951, 10281, 116313, 1436499, 20203795, 338834053, 5824666893, 108142092169, 2118605140237, 44375797806315, 1039641056342619, 25413053107195539, 646983321301050147, 17311013062443870681, 481282277347815404745, 13913039361920333694165
OFFSET
0,3
LINKS
EXAMPLE
a(3) = 19: 3a|b|c, 3a|c|b, 3b|a|c, 3b|c|a, 3c|a|b, 3c|b|a, 2a|b1c, 2b|a1c, 2a|c1b, 2c|a1b, 2b|c1a, 2c|b1a, 1a2b|c, 1a2c|b, 1b2a|c, 1b2c|a, 1c2a|b, 1c2b|a, 111abc.
MAPLE
with(combinat):
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
b(n-i*j, i-1, p+j)/j!*multinomial(n, n-i*j, j$i), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..25);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i<1, 0, Sum[b[n - i*j, i-1, p + j]/j!*multinomial[n, Join[{n - i*j}, Table[j, {i}]]], {j, 0, n/i}]]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 04 2022, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A267802 A229928 A309183 * A037781 A037585 A084133
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 31 2015
STATUS
approved