Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Mar 04 2022 10:57:11
%S 1,1,3,19,115,951,10281,116313,1436499,20203795,338834053,5824666893,
%T 108142092169,2118605140237,44375797806315,1039641056342619,
%U 25413053107195539,646983321301050147,17311013062443870681,481282277347815404745,13913039361920333694165
%N Number of compositions of n where the (possibly scattered) maximal subsequence of part i with multiplicity j is marked with i words of length j over an n-ary alphabet whose letters appear in alphabetical order and all n letters occur exactly once in the composition.
%H Alois P. Heinz, <a href="/A261777/b261777.txt">Table of n, a(n) for n = 0..400</a>
%e a(3) = 19: 3a|b|c, 3a|c|b, 3b|a|c, 3b|c|a, 3c|a|b, 3c|b|a, 2a|b1c, 2b|a1c, 2a|c1b, 2c|a1b, 2b|c1a, 2c|b1a, 1a2b|c, 1a2c|b, 1b2a|c, 1b2c|a, 1c2a|b, 1c2b|a, 111abc.
%p with(combinat):
%p b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
%p b(n-i*j, i-1, p+j)/j!*multinomial(n, n-i*j, j$i), j=0..n/i)))
%p end:
%p a:= n-> b(n$2, 0):
%p seq(a(n), n=0..25);
%t multinomial[n_, k_List] := n!/Times @@ (k!);
%t b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i<1, 0, Sum[b[n - i*j, i-1, p + j]/j!*multinomial[n, Join[{n - i*j}, Table[j, {i}]]], {j, 0, n/i}]]];
%t a[n_] := b[n, n, 0];
%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Mar 04 2022, after _Alois P. Heinz_ *)
%Y Cf. A000670, A261774.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Aug 31 2015